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BEAM WAIST AND DIVERGENCE

In order to gain an appreciation of the principles and limitations of
Gaussian beam optics, it is necessary to understand the nature of the laser
output beam. In TEM00 mode, the beam emitted from a laser begins as a
perfect plane wave with a Gaussian transverse irradiance profile as shown
in figure 2.1. The Gaussian shape is truncated at some diameter either by
the internal dimensions of the laser or by some limiting aperture in the
optical train. To specify and discuss the propagation characteristics of a
laser beam, we must define its diameter in some way. There are two
commonly accepted definitions.  One definition is the diameter at which the
beam irradiance (intensity) has fallen to 1/e2 (13.5 percent) of its peak, or
axial value and the other is the diameter at which the beam irradiance
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Gaussian Beam Optics

Gaussian Beam Optics2.2

In most laser applications it is necessary to focus, modify, or shape the laser
beam by using lenses and other optical elements.  In general, laser-beam
propagation can be approximated by assuming that the laser beam has an
ideal Gaussian intensity profile, which corresponds to the theoretical TEM00
mode.  Coherent Gaussian beams have peculiar transformation properties
which require special consideration.  In order to select the best optics
for a particular laser application, it is important to understand the basic
properties of Gaussian beams.

Unfortunately, the output from real-life lasers is not truly Gaussian (although
the output of a single mode fiber is a very close approximation). To accom-
modate this variance, a quality factor, M2 (called the “M-squared”
factor), has been defined to describe the deviation of the laser beam from
a theoretical Gaussian. For a theoretical Gaussian, M2 = 1; for a real laser
beam, M2>1. The M2 factor for helium neon lasers is typically less than
1.1; for ion lasers, the M2 factor typically is between 1.1 and 1.3. Collimated
TEM00 diode laser beams usually have an M2 ranging from 1.1 to 1.7. For
high-energy multimode lasers, the M2 factor can be as high as 25 or 30.
In all cases, the M2 factor affects the characteristics of a laser beam and
cannot be neglected in optical designs.

In the following section, Gaussian Beam Propagation, we will treat the
characteristics of a theoretical Gaussian beam (M2=1); then, in the section
Real Beam Propagation we will show how these characteristics change as
the beam deviates from the theoretical. In all cases, a circularly symmetric
wavefront is assumed, as would be the case for a helium neon laser or an
argon-ion laser. Diode laser beams are asymmetric and often astigmatic,
which causes their transformation to be more complex.

Although in some respects component design and tolerancing for lasers is
more critical than for conventional optical components, the designs often
tend to be simpler since many of the constraints associated with imaging
systems are not present. For instance, laser beams are nearly always used
on axis, which eliminates the need to correct asymmetric aberration.
Chromatic aberrations are of no concern in single-wavelength lasers, although
they are critical for some tunable and multiline laser applications. In fact, the
only significant aberration in most single-wavelength applications is
primary (third-order) spherical aberration.

Scatter from surface defects, inclusions, dust, or damaged coatings is of
greater concern in laser-based systems than in incoherent systems. Speckle
content arising from surface texture and beam coherence can limit system
performance.

Because laser light is generated coherently, it is not subject to some of the
limitations normally associated with incoherent sources. All parts of the
wavefront act as if they originate from the same point; consequently, the
emergent wavefront can be precisely defined. Starting out with a well-
defined wavefront permits more precise focusing and control of the beam
than otherwise would be possible.

For virtually all laser cavities, the propagation of an electromagnetic field,
E(0), through one round trip in an optical resonator can be described
mathematically by a propagation integral, which has the general form

where K is the propagation constant at the carrier frequency of the opti-
cal signal, p is the length of one period or round trip, and the integral is over
the transverse coordinates at the reference or input plane. The function K
is commonly called the propagation kernel since the field E(1)(x, y), after
one propagation step, can be obtained from the initial field E (0)(x0, y0)
through the operation of the linear kernel or “propagator” K(x, y, x0, y0).

By setting the condition that the field, after one period, will have exactly
the same transverse form, both in phase and profile (amplitude variation
across the field), we get the equation 

where Enm represents a set of mathematical eigenmodes, and gnm a
corresponding set of eigenvalues. The eigenmodes are referred to as
transverse cavity modes, and, for stable resonators, are closely approx-
imated by Hermite-Gaussian functions, denoted by TEMnm. (Anthony
Siegman, Lasers)

The lowest order, or “fundamental” transverse mode, TEM00 has a
Gaussian intensity profile, shown in figure 2.1, which has the form

In this section we will identify the propagation characteristics of this low-
est-order solution to the propagation equation. In the next section, Real Beam
Propagation, we will discuss the propagation characteristics of higher-order
modes, as well as beams that have been distorted by diffraction or various
anisotropic phenomena.

Gaussian Beam Propagation

E x y e K x y x y E x y dx dyjkp
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Figure 2.1 Irradiance profile of a Gaussian TEM00 mode

Figure 2.2 Diameter of a Gaussian beam

toward infinity as z is further increased, asymptotically approaching the
value of z itself. The plane z = 0 marks the location of a Gaussian waist, or
a place where the wavefront is flat, and w0 is called the beam waist radius.

The irradiance distribution of the Gaussian TEM00 beam, namely, 

where w = w(z) and P is the total power in the beam, is the same at all
cross sections of the beam.

The invariance of the form of the distribution is a special consequence
of the presumed Gaussian distribution at z = 0. If a uniform irradiance
distribution had been presumed at z = 0, the pattern at z = ∞ would have
been the familiar Airy disc pattern given by a Bessel function, whereas the
pattern at intermediate z values would have been enormously complicated.

Simultaneously, as R(z) asymptotically approaches z for large z, w(z)
asymptotically approaches the value

where z is presumed to be much larger than pw0 /l so that the 1/e2

irradiance contours asymptotically approach a cone of angular radius 

(intensity) has fallen to 50 percent of its peak, or axial value, as shown
in figure 2.2.  This second definition is also referred to as FWHM, or full
width at half maximum.  For the remainder of this guide, we will be using
the 1/e2 definition.

Diffraction causes light waves to spread transversely as they propagate,
and it is therefore impossible to have a perfectly collimated beam. The
spreading of a laser beam is in precise accord with the predictions of pure
diffraction theory; aberration is totally insignificant in the present context.
Under quite ordinary circumstances, the beam spreading can be so small it
can go unnoticed. The following formulas accurately describe beam spread-
ing, making it easy to see the capabilities and limitations of laser beams.

Even if a Gaussian TEM00 laser-beam wavefront were made perfectly flat
at some plane, it would quickly acquire curvature and begin spreading in
accordance with 

where z is the distance propagated from the plane where the wavefront
is flat, l is the wavelength of light, w0 is the radius of the 1/e2 irradiance
contour at the plane where the wavefront is flat, w(z) is the radius of
the 1/e2 contour after the wave has propagated a distance z, and R(z)
is the wavefront radius of curvature after propagating a distance z. R(z) is
infinite at z = 0, passes through a minimum at some finite z, and rises again
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This value is the far-field angular radius (half-angle divergence) of the
Gaussian TEM00 beam. The vertex of the cone lies at the center of the
waist, as shown in figure 2.3.

It is important to note that, for a given value of l, variations of beam
diameter and divergence with distance z are functions of a single
parameter, w0, the beam waist radius.

www.cvimellesgriot .com 
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w
w0

w0
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1
e2 irradiance surface

v
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Figure 2.3 Growth in 1/e2 radius with distance
propagated away from Gaussian waist

laser

2w0

v
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Figure 2.4 Changes in wavefront radius with propagation distance

curvature is a maximum. Far-field divergence (the number quoted in laser
specifications) must be measured at a distance much greater than zR
(usually >10#zR will suffice). This is a very important distinction because
calculations for spot size and other parameters in an optical train will be
inaccurate if near- or mid-field divergence values are used. For a tightly
focused beam, the distance from the waist (the focal point) to the far field
can be a few millimeters or less. For beams coming directly from the laser,
the far-field distance can be measured in meters.

Typically, one has a fixed value for w0 and uses the expression 

to calculate w(z) for an input value of z. However, one can also utilize this
equation to see how final beam radius varies with starting beam radius
at a fixed distance, z. Figure 2.5 shows the Gaussian beam propagation
equation plotted as a function of w0, with the particular values of
l = 632.8 nm and z = 100 m.

The beam radius at 100 m reaches a minimum value for a starting beam
radius of about 4.5 mm. Therefore, if we wanted to achieve the best
combination of minimum beam diameter and minimum beam spread (or
best collimation) over a distance of 100 m, our optimum starting beam
radius would be 4.5 mm. Any other starting value would result in a larger
beam at z = 100 m.

We can find the general expression for the optimum starting beam radius
for a given distance, z. Doing so yields

Using this optimum value of w0 will provide the best combination of
minimum starting beam diameter and minimum beam spread [ratio of

w
z
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Near-Field vs Far-Field Divergence

Unlike conventional light beams, Gaussian beams do not diverge linearly.
Near the beam waist, which is typically close to the output of the laser, the
divergence angle is extremely small; far from the waist, the divergence angle
approaches the asymptotic limit described above. The Raleigh range (zR),
defined as the distance over which the beam radius spreads by a factor
of √

_
2, is given by

At the beam waist (z = 0), the wavefront is planar [R(0) = ∞]. Likewise,
at z = ∞, the wavefront is planar [R(∞) = ∞]. As the beam propagates from
the waist, the wavefront curvature, therefore, must increase to a maximum
and then begin to decrease, as shown in figure 2.4. The Raleigh range,
considered to be the dividing line between near-field divergence and mid-
range divergence, is the distance from the waist at which the wavefront

z
w

R =
p

l
0
2

(2.9) .
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Figure 2.5 Beam radius at 100 m as a function of starting
beam radius for a HeNe laser at 632.8 nm

beam expander

w(–zR) =   2w0

beam waist
2w0

zR zR

w(zR) =   2w0

Figure 2.6 Focusing a beam expander to minimize beam
radius and spread over a specified distance

Location of the beam waist

The location of the beam waist is required for most 
Gaussian-beam calculations. CVI Melles Griot lasers are 
typically designed to place the beam waist very close to the
output surface of the laser.  If a more accurate location than this
is required, our applications engineers can furnish the precise
location and tolerance for a particular laser model.

APPLICATION NOTE

Do you need . . .

BEAM EXPANDERS

CVI Melles Griot offers a range of precision beam expanders
for better performance than can be achieved with the simple
lens combinations shown here.

w(z) to w0] over the distance z. For z = 100 m and l = 632.8 nm, w0
(optimum) = 4.48 mm (see example above). If we put this value for w0
(optimum) back into the expression for w(z),

Thus, for this example, 

By turning this previous equation around, we find that we once again have
the Rayleigh range (zR), over which the beam radius spreads by a factor
of √

_
2 as 

If we use beam-expanding optics that allow us to adjust the position of the
beam waist, we can actually double the distance over which beam divergence
is minimized, as illustrated in figure 2.6. By focusing the beam-expanding
optics to place the beam waist at the midpoint, we can restrict beam spread
to a factor of  √

_
2 over a distance of 2zR, as opposed to just zR.

This result can now be used in the problem of finding the starting beam radius
that yields the minimum beam diameter and beam spread over 100 m.
Using 2(zR) = 100 m, or zR = 50 m, and l = 632.8 nm, we get a value of
w(zR) = (2l/p)½ = 4.5 mm, and w0 = 3.2 mm. Thus, the optimum starting
beam radius is the same as previously calculated. However, by focusing the
expander we achieve a final beam radius that is no larger than our starting
beam radius, while still maintaining the √

_
2 factor in overall variation. 

Alternately, if we started off with a beam radius of 6.3 mm, we could
focus the expander to provide a beam waist of w0 = 4.5 mm at 100 m, and
a final beam radius of 6.3 mm at 200 m.

z
w

w z w

R

R
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=

( ) =

p

l
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2

0
2 .

w 100 2 4 48 6 3( ) = ( ) =. .  mm

w z w( ) = ( )2
0

(2.11) 

with

2ch_GuassianBeamOptics_Final.qxd  6/15/2009  2:54 PM  Page 2.5

http://www.cvimellesgriot.com/
http://www.cvimellesgriot.com/


Fu
nd

am
en

ta
l O

pt
ic

s
G

au
ss

ia
n 

Be
am

 O
pt

ic
s

O
pt

ic
al

 S
pe

ci
fic

at
io

ns
M

at
er

ia
l P

ro
pe

rt
ie

s
O

pt
ic

al
 C

oa
ti

ng
s

Self recommends calculating zR, w0, and the position of w0 for each
optical element in the system in turn so that the overall transformation
of the beam can be calculated. To carry this out, it is also necessary to
consider magnification: w0″/w0. The magnification is given by

The Rayleigh range of the output beam is then given by 

All the above formulas are written in terms of the Rayleigh range of the
input beam. Unlike the geometric case, the formulas are not symmetric with
respect to input and output beam parameters. For back tracing beams, it
is useful to know the Gaussian beam formula in terms of the Rayleigh
range of the output beam: 

Transformation and Magnification
by Simple Lenses

www.cvimellesgriot .com 

Gaussian Beam Optics

Gaussian Beam Optics2.6

It is clear from the previous discussion that Gaussian beams transform in
an unorthodox manner.  Siegman uses matrix transformations to treat the
general problem of Gaussian beam propagation with lenses and mirrors. A
less rigorous, but in many ways more insightful, approach to this problem
was developed by Self (S. A. Self, “Focusing of Spherical Gaussian Beams”).
Self shows a method to model transformations of a laser beam through
simple optics, under paraxial conditions, by calculating the Rayleigh range
and beam waist location following each individual optical element. These
parameters are calculated using a formula analogous to the well-known
standard lens-maker’s formula.

The standard lens equation is written as 

where s is the object distance, s″ is the image distance, and f is the focal length
of the lens. For Gaussian beams, Self has derived an analogous formula by
assuming that the waist of the input beam represents the object, and the
waist of the output beam represents the image. The formula is expressed in
terms of the Rayleigh range of the input beam.

In the regular form,  

In the far-field limit as z/R approaches 0 this reduces to the geometric optics
equation. A plot of s/f versus s″/f for various values of z/R/f is shown in
figure 2.7. For a positive thin lens, the three distinct regions of interest
correspond to real object and real image, real object and virtual image,
and virtual object and real image.

The main differences between Gaussian beam optics and geometric optics,
highlighted in such a plot, can be summarized as follows: 

$ There is a maximum and a minimum image distance for
Gaussian beams.

$ The maximum image distance occurs at s = f=z/R, rather
than at s = f.

$ There is a common point in the Gaussian beam expression at
s/f = s″/f = 1. For a simple positive lens, this is the point at which
the incident beam has a waist at the front focus and the emerging
beam has a waist at the rear focus.

$ A lens appears to have a shorter focal length as z/R/f increases
from zero (i.e., there is a Gaussian focal shift).
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Figure 2.7 Plot of lens formula for Gaussian beams with
normalized Rayleigh range of the input beam as the
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or, in dimensionless form,
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BEAM CONCENTRATION

The spot size and focal position of a Gaussian beam can be determined
from the previous equations. Two cases of particular interest occur when
s = 0 (the input waist is at the first principal surface of the lens system) and
s = f (the input waist is at the front focal point of the optical system). For
s = 0, we get

For the case of s=f, the equations for image distance and waist size reduce
to the following: 

Substituting typical values into these equations yields nearly identical results,
and for most applications, the simpler, second set of equations can be used.

In many applications, a primary aim is to focus the laser to a very small
spot, as shown in figure 2.8, by using either a single lens or a combination
of several lenses.

If a particularly small spot is desired, there is an advantage to using a
well-corrected high-numerical-aperture microscope objective to concen-
trate the laser beam. The principal advantage of the microscope objective
over a simple lens is the diminished level of spherical aberration. Although
microscope objectives are often used for this purpose, they are not always
designed for use at the infinite conjugate ratio. Suitably optimized lens
systems, known as infinite conjugate objectives, are more effective in
beam-concentration tasks and can usually be identified by the infinity
symbol on the lens barrel.

DEPTH OF FOCUS

Depth of focus (8Dz), that is, the range in image space over which the
focused spot diameter remains below an arbitrary limit, can be derived from
the formula 

The first step in performing a depth-of-focus calculation is to set the
allowable degree of spot size variation. If we choose a typical value of 5
percent, or w(z)0 = 1.05w0, and solve for z = Dz, the result is 

Since the depth of focus is proportional to the square of focal spot size,
and focal spot size is directly related to f-number (f/#), the depth of focus
is proportional to the square of the f/# of the focusing system.

TRUNCATION

In a diffraction-limited lens, the diameter of the image spot is

where K is a constant dependent on truncation ratio and pupil illumination,
l is the wavelength of light, and f/# is the speed of the lens at truncation.
The intensity profile of the spot is strongly dependent on the intensity
profile of the radiation filling the entrance pupil of the lens. For uniform
pupil illumination, the image spot takes on the Airy disc intensity profile
shown in figure 2.9.
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Calculation of spot diameter for these or other truncation ratios requires
that K be evaluated. This is done by using the formulas 

and 

The K function permits calculation of the on-axis spot diameter for
any beam truncation ratio. The graph in figure 2.11 plots the K factor
vs T(Db/Dt).

The optimal choice for truncation ratio depends on the relative importance
of spot size, peak spot intensity, and total power in the spot as demon-
strated in the table below. The total power loss in the spot can be calculated
by using 

for a truncated Gaussian beam. A good compromise between power loss
and spot size is often a truncation ratio of T = 1. When T = 2 (approximately
uniform illumination), fractional power loss is 60 percent. When T = 1, d1/e

2

is just 8.0 percent larger than when T = 2, whereas fractional power loss
is down to 13.5 percent. Because of this large savings in power with
relatively little growth in the spot diameter, truncation ratios of 0.7 to 1.0
are typically used. Ratios as low as 0.5 might be employed when laser
power must be conserved. However, this low value often wastes too much
of the available clear aperture of the lens. 
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If the pupil illumination is Gaussian in profile, the result is an image spot of
Gaussian profile, as shown in figure 2.10.

When the pupil illumination is between these two extremes, a hybrid
intensity profile results.

In the case of the Airy disc, the intensity falls to zero at the point
dzero = 2.44#l#f/#, defining the diameter of the spot. When the pupil
illumination is not uniform, the image spot intensity never falls to zero
making it necessary to define the diameter at some other point. This is
commonly done for two points:

dFWHM = 50-percent intensity point

and 

d1/e
2 = 13.5% intensity point.

It is helpful to introduce the truncation ratio 

where Db is the Gaussian beam diameter measured at the 1/e2 intensity
point, and Dt is the limiting aperture diameter of the lens. If T = 2, which
approximates uniform illumination, the image spot intensity profile
approaches that of the classic Airy disc. When T = 1, the Gaussian
profile is truncated at the 1/e2 diameter, and the spot profile is clearly a
hybrid between an Airy pattern and a Gaussian distribution. When T = 0.5,
which approximates the case for an untruncated Gaussian input beam, the
spot intensity profile approaches a Gaussian distribution.
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Figure 2.10 Gaussian intensity distribution at the image
plane
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Figure 2.11 K factors as a function of truncation ratio
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SPATIAL FILTERING

Laser light scattered from dust particles residing on optical surfaces may
produce interference patterns resembling holographic zone planes. Such
patterns can cause difficulties in interferometric and holographic applications
where they form a highly detailed, contrasting, and confusing background
that interferes with desired information. Spatial filtering is a simple way
of suppressing this interference and maintaining a very smooth beam
irradiance distribution. The scattered light propagates in different direc-
tions from the laser light and hence is spatially separated at a lens focal
plane. By centering a small aperture around the focal spot of the direct
beam, as shown in figure 2.12, it is possible to block scattered light while
allowing the direct beam to pass unscathed. The result is a cone of light
that has a very smooth irradiance distribution and can be refocused to form
a collimated beam that is almost uniformly smooth.

As a compromise between ease of alignment and complete spatial filtering,
it is best that the aperture diameter be about two times the 1/e2 beam
contour at the focus, or about 1.33 times the 99% throughput contour
diameter.

www.cvimellesgriot .com
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focusing lens

pinhole aperture

Figure 2.12 Spatial filtering smoothes the irradiance
distribution

Truncation Ratio dFWHM d1/e2 dzero PL(%)

Spot Diameters and Fractional Power
Loss for Three Values of Truncation

Infinity 1.03 1.64 2.44 100

2.0 1.05 1.69 — 60

1.0 1.13 1.83 — 13.5

0.5 1.54 2.51 — 0.03

Do you need . . .

SPATIAL FILTERS

CVI Melles Griot offers 3-axis spatial filters with
precision micrometers (07 SFM 201 and 07 SFM 701). These
devices feature an open-design that provides access to the
beam as it passes through the instrument. The spatial filter
consists of a precision, differential-micrometer y-z stage, which
controls the pinhole location, and a single-axis translation stage
for the focusing lens. The spatial filter mount accepts LSL-series
focusing optics, OAS-series microscope objectives, and PPM-
series mounted pinholes. 

The precision individual pinholes are for general-purpose
spatial filtering. The high-energy laser precision pinholes are
constructed specifically to withstand irradiation from high-
energy lasers.
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Real Beam Propagation
www.cvimellesgriot .com 

Gaussian Beam Optics

Gaussian Beam Optics2.10

In the real world, truly Gaussian laser beams are very hard to find. Low-
power beams from helium neon lasers can be a close approximation, but
the higher the power of the laser is, the more complex the excitation
mechanism (e.g., transverse discharges, flash-lamp pumping), and the
higher the order of the mode is, the more the beam deviates from the ideal.

To address the issue of non-Gaussian beams, a beam quality factor, M2,
has come into general use.

For a typical helium neon laser operating in TEM00 mode, M2 <1.1. Ion
lasers typically have an M2 factor ranging from 1.1 to 1.7. For high-energy
multimode lasers, the M2 factor can be as high as 10 or more. In all cases,
the M2 factor affects the characteristics of a laser beam and cannot be
neglected in optical designs, and truncation, in general, increases the M2

factor of the beam. 

In Laser Modes, we will illustrate the higher-order eigensolutions to the
propagation equation, and in The Propagation Constant, M2 will be defined.
The section Incorporating M2 into the Propagation Equations defines how
non-Gaussian beams propagate in free space and through optical systems.

THE PROPAGATION CONSTANT

The propagation of a pure Gaussian beam can be fully specified by either
its beam waist diameter or its far-field divergence. In principle, full
characterization of a beam can be made by simply measuring the waist
diameter, 2w0, or by measuring the diameter, 2w(z), at a known and
specified distance (z) from the beam waist, using the equations 

and 

where l is the wavelength of the laser radiation, and w(z) and R(z) are
the beam radius and wavefront radius, respectively, at distance z from the
beam waist.  In practice, however, this approach is fraught with problems—
it is extremely difficult, in many instances, to locate the beam waist; relying
on a single-point measurement is inherently inaccurate; and, most
important, pure Gaussian laser beams do not exist in the real world. The
beam from a well-controlled helium neon laser comes very close, as does
the beam from a few other gas lasers. However, for most lasers (even those

LASER MODES

The fundamental TEM00 mode is only one of many transverse modes that
satisfy the round-trip propagation criteria described in Gaussian Beam
Propagation. Figure 2.13 shows examples of the primary lower-order
Hermite-Gaussian (rectangular) solutions to the propagation equation.

Note that the subscripts n and m in the eigenmode TEMnm are correlated
to the number of nodes in the x and y directions. In each case, adjacent
lobes of the mode are 180 degrees out of phase. 

The propagation equation can also be written in cylindrical form in terms
of radius (r) and angle (f). The eigenmodes (Erf) for this equation are a
series of axially symmetric modes, which, for stable resonators, are closely
approximated by Laguerre-Gaussian functions, denoted by TEMrf. For the
lowest-order mode, TEM00, the Hermite-Gaussian and Laguerre-Gaussian
functions are identical, but for higher-order modes, they differ significantly,
as shown in figure 2.14.

TEM00 TEM01 TEM10 TEM11 TEM02

Figure 2.13 Low-order Hermite-Gaussian resonator modes

The mode, TEM01, also known as the “bagel” or “doughnut” mode, is
considered to be a superposition of the Hermite-Gaussian TEM10 and
TEM01 modes, locked in phase quadrature.  In real-world lasers, the
Hermite-Gaussian modes predominate since strain, slight misalignment,
or contamination on the optics tends to drive the system toward rectan-
gular coordinates. Nonetheless, the Laguerre-Gaussian TEM10 “target” or
“bulls-eye” mode is clearly observed in well-aligned gas-ion and helium
neon lasers with the appropriate limiting apertures.
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specifying a fundamental TEM00 mode), the output contains some com-
ponent of higher-order modes that do not propagate according to the
formula shown above. The problems are even worse for lasers operating
in high-order modes.

The need for a figure of merit for laser beams that can be used to
determine the propagation characteristics of the beam has long been
recognized. Specifying the mode is inadequate because, for example, the
output of a laser can contain up to 50 percent higher-order modes and
still be considered TEM00. 

www.cvimellesgriot .com
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TEM00 TEM01* TEM10

Figure 2.14 Low-order axisymmetric resonator modes

2wR(R) = M[2w (R)]
            = M(2w0√2)

2v

z

embedded
Gaussian

mixed
mode

2w0R = M(2w0)

2w0

z = 0 z = R

M(2v)

Figure 2.15 The embedded Gaussian

The concept of a dimensionless beam propagation parameter was developed
in the early 1970s to meet this need, based on the fact that, for any given
laser beam (even those not operating in the TEM00 mode) the product of
the beam waist radius (w0) and the far-field divergence (v) are constant
as the beam propagates through an optical system, and the ratio 

where w0R and vR, the beam waist and far-field divergence of the real beam,
respectively, is an accurate indication of the propagation characteristics of
the beam. For a true Gaussian beam, M2 = 1.

EMBEDDED GAUSSIAN

The concept of an “embedded Gaussian,” shown in figure 2.15, is useful
as a construct to assist with both theoretical modeling and laboratory
measurements.

A mixed-mode beam that has a waist M (not M2) times larger than the
embedded Gaussian will propagate with a divergence M times greater
than the embedded Gaussian. Consequently the beam diameter of the
mixed-mode beam will always be M times the beam diameter of the
embedded Gaussian, but it will have the same radius of curvature and the
same Rayleigh range (z = R).

M
w

w

2 0

0

= R Rv

v
(2.25) 
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In a like manner, the lens equation can be modified to incorporate M2.
The standard equation becomes 

and the normalized equation transforms to

Incorporating MM2 Into the Propagation Equations

In the previous section we defined the propagation constant  M2

where w0R and vR are the beam waist and far-field divergence of the real
beam, respectively. 

For a pure Gaussian beam, M2 = 1, and the beam-waist beam-divergence
product is given by

It follows then that for a real laser beam,

The propagation equations for a real laser beam are now written as 

where wR(z) and RR(z) are the 1/e2 intensity radius of the beam and the
beam wavefront radius at z, respectively.

The equation for w0(optimum) now becomes

The definition for the Rayleigh range remains the same for a real laser
beam and becomes

For M2 = 1, these equations reduce to the Gaussian beam propagation
equations .
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Do you need . . .

CVI Melles Griot Lasers and
Laser Accessories

CVI Melles Griot manufactures many types of lasers and laser
systems for laboratory and OEM applications. Laser types
include helium neon (HeNe) and helium cadmium (HeCd) lasers,
argon, krypton, and mixed gas (argon/krypton) ion lasers; diode
lasers and diode-pumped solid-state (DPSS) lasers. CVI Melles
Griot also offers a range of laser accessories including laser
beam expanders, generators, laser-line collimators, spatial filters
and shear-plate collimation testers.
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EXAMPLE: OBTAIN AN 8-MM SPOT AT 80 M

Using the CVI Melles Griot HeNe laser 25 LHR 151, produce a spot 8 mm in
diameter at a distance of 80 m, as shown in figure 2.16

The CVI Melles Griot 25 LHR 151 helium neon laser has an output beam
radius of 0.4 mm. Assuming a collimated beam, we use the propagation
formula 

to determine the spot size at 80 m: 

or 80.6-mm beam diameter. This is just about exactly a factor of 10 larger
than we wanted. We can use the formula for w0 (optimum) to determine the
smallest collimated beam diameter we could achieve at a distance of 80 m:
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Lens Selection
www.cvimellesgriot .com

2.13Gaussian Beam Optics

Gaussian Beam Optics

The most important relationships that we will use in the process of lens
selection for Gaussian-beam optical systems are focused spot radius and beam
propagation.

Focused Spot Radius

where wF is the spot radius at the focal point, and wL is the radius of the
collimated beam at the lens. M2 is the quality factor (1.0 for a theoretical
Gaussian beam).

Beam Propagation

and 

where w0R is the radius of a real (non-Gaussian) beam at the waist, and
wR (z) is the radius of the beam at a distance z from the waist. For M2 = 1,
the formulas reduce to that for a Gaussian beam. w0(optimum) is the
beam waist radius that minimizes the beam radius at distance z, and is
obtained by differentiating the previous equation with respect to distance
and setting the result equal to zero.

Finally, 

where zR is the Raleigh range.
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Figure 2.16 Lens spacing adjusted empirically to achieve an 8-mm spot size at 80 m

We can also utilize the equation for the approximate on-axis spot size
caused by spherical aberration for a plano-convex lens at the infinite
conjugate: 

This formula is for uniform illumination, not a Gaussian intensity profile.
However, since it yields a larger value for spot size than actually occurs,
its use will provide us with conservative lens choices. Keep in mind that
this formula is for spot diameter whereas the Gaussian beam formulas are
all stated in terms of spot radius.
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In order to determine necessary focal lengths for an expander, we need
to solve these two equations for the two unknowns.

In this case, using a negative value for the magnification will provide us with
a Galilean expander. This yields values of f2 = 55.5 mm] and f1 = 45.5 mm.

Ideally, a plano-concave diverging lens is used for minimum spherical
aberration, but the shortest catalog focal length available is -10 mm.
There is, however, a biconcave lens with a focal length of 5 mm (LDK-5.0-
5.5-C). Even though this is not the optimum shape lens for this application,
the extremely short focal length is likely to have negligible aberrations at this
f-number. Ray tracing would confirm this.

Now that we have selected a diverging lens with a focal length of 45 mm,
we need to choose a collimating lens with a focal length of 50 mm. To
determine whether a plano-convex lens is acceptable, check the spherical
aberration formula.

Clearly, a plano-convex lens will not be adequate. The next choice would
be an achromat, such as the LAO-50.0-18.0. The data in the spot size
charts indicate that this lens is probably diffraction limited at this f-number.
Our final system would therefore consist of the LDK-5.0-5.5-C spaced
about 45 mm from the LAO-50.0-18.0, which would have its flint element
facing toward the laser.

This tells us that if we expand the beam by a factor of 10 (4.0 mm/0.4 mm),
we can produce a collimated beam 8 mm in diameter, which, if focused at
the midpoint (40 m), will again be 8 mm in diameter at a distance of 80 m.
This 10# expansion could be accomplished most easily with one of the
CVI Melles Griot beam expanders, such as the 09 LBX 003 or 09 LBM 013.
However, if there is a space constraint and a need to perform this task with
a system that is no longer than 50 mm, this can be accomplished by using
catalog components. 

Figure 2.17 illustrates the two main types of beam expanders.

The Keplerian type consists of two positive lenses, which are positioned
with their focal points nominally coincident. The Galilean type consists of
a negative diverging lens, followed by a positive collimating lens, again
positioned with their focal points nominally coincident. In both cases, the
overall length of the optical system is given by 

and the magnification is given by 

where a negative sign, in the Galilean system, indicates an inverted image
(which is unimportant for laser beams). The Keplerian system, with its
internal point of focus, allows one to utilize a spatial filter, whereas the
Galilean system has the advantage of shorter length for a given magnification.
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Keplerian beam expander

f1 f2

Galilean beam expander

f1

f2

Figure 2.17 Two main types of beam expanders

overall length   = +f f
1 2

magnification =
f

f
2

1

f f

f

f

1 2

2

1

50

10

+ =

= −

 mm

and

.

The spot diameter resulting from spherical aberration is

     
 

 m

The spot diameter resulting from d

0 067 50

6 25
14

3

.

.
.

×
= m

iiffraction (2 ) is

  
  m

w
0

3
2 0 6328 10 50

4 0
5

( . )
.

.
×

=
−

p
m

References
A. Siegman. Lasers (Sausalito, CA: University Science Books, 1986).

S. A. Self. “Focusing of Spherical Gaussian Beams.” Appl. Opt. 22, no. 5 (March
1983): 658.

H. Sun. “Thin Lens Equation for a Real Laser Beam with Weak Lens Aperture
Truncation.” Opt. Eng. 37, no. 11 (November 1998).

R. J. Freiberg, A. S. Halsted. “Properties of Low Order Transverse Modes in
Argon Ion Lasers.” Appl. Opt. 8, no. 2 (February 1969): 355-362.

W. W. Rigrod. “Isolation of Axi-Symmetric Optical-Resonator Modes.”Appl.
Phys. Let. 2, no. 3 (February 1963): 51-53.

M. Born, E. Wolf. Principles of Optics Seventh Edition (Cambridge, UK: Cam-
bridge University Press, 1999).

and

The spot diameter resulting from spherical aberration is

The spot diameter resulting from diffraction (2wo) is
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