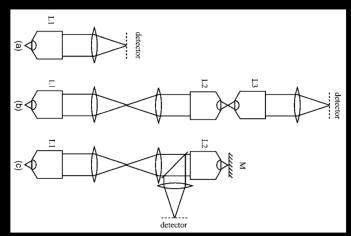
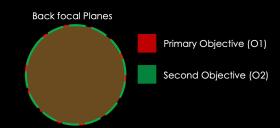

- These two papers instrumental in seeding the idea for what follows (OPM, SCAPE):

Botcherby EJ, Juskaitis R, Booth MJ, Wilson T (2007) Aberration-free optical refocusing in high numerical aperture microscopy. Opt Lett 32:2007

Botcherby EJ, Juškaitis R, Booth MJ, Wilson T (2008) An optical technique for remote focusing in microscopy. Opt Commun 281:880-887

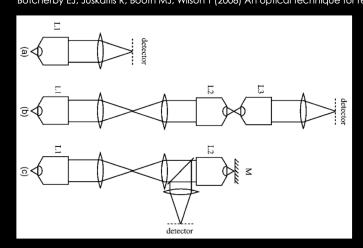


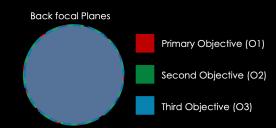

- Remote scanning of the imaging plane of a microscope with no movement of the objective lens relative to the sample

- These two papers instrumental in seeding the idea for what follows (OPM, SCAPE):

Botcherby EJ, Juskaitis R, Booth MJ, Wilson T (2007) Aberration-free optical refocusing in high numerical aperture microscopy. Opt Lett 32:2007

Botcherby EJ, Juškaitis R, Booth MJ, Wilson T (2008) An optical technique for remote focusing in microscopy. Opt Commun 281:880–887

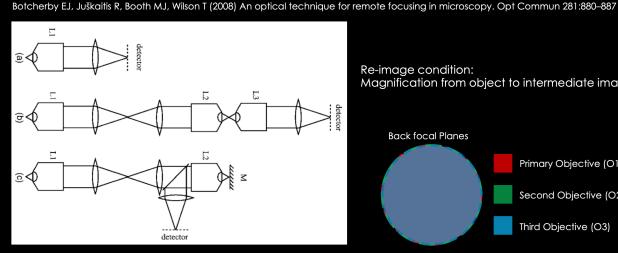


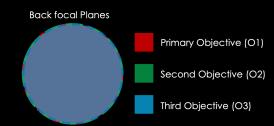


- Remote scanning of the imaging plane of a microscope with no movement of the objective lens relative to the sample

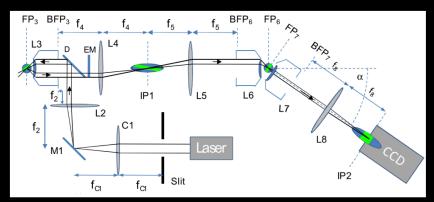
- These two papers instrumental in seeding the idea for what follows (OPM, SCAPE):

Botcherby EJ, Juskaitis R, Booth MJ, Wilson T (2007) Aberration-free optical refocusing in high numerical aperture microscopy. Opt Lett 32:2007 Botcherby EJ, Juškaitis R, Booth MJ, Wilson T (2008) An optical technique for remote focusing in microscopy. Opt Commun 281:880–887

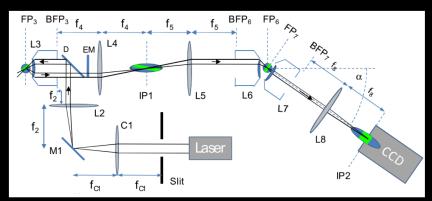


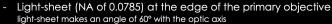

- Remote scanning of the imaging plane of a microscope with no movement of the objective lens relative to the sample

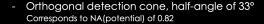
These two papers instrumental in seeding the idea for what follows (OPM, SCAPE):

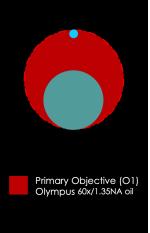

Botcherby EJ, Juskaitis R, Booth MJ, Wilson T (2007) Aberration-free optical refocusing in high numerical aperture microscopy. Opt Lett 32:2007

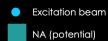
Re-image condition: Magnification from object to intermediate image = n_1/n_2

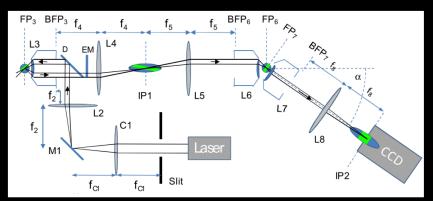

Remote scanning of the imaging plane of a microscope with no movement of the objective lens relative to the sample

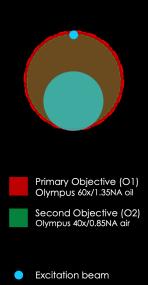


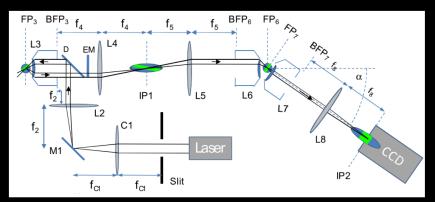

 Light-sheet (NA of 0.0785) at the edge of the primary objective light-sheet makes an angle of 60° with the optic axis

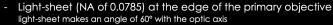



Excitation beam

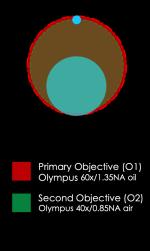




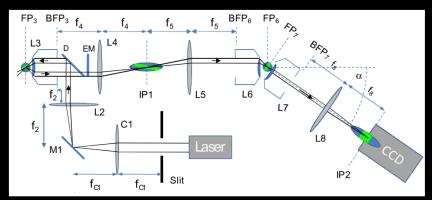




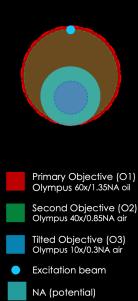
- Light-sheet (NA of 0.0785) at the edge of the primary objective light-sheet makes an angle of 60° with the optic axis
- Orthogonal detection cone, half-angle of 33° Corresponds to NA(potential) of 0.82

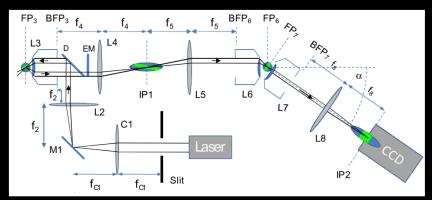


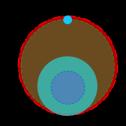
NA (potential)

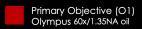


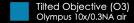
- Orthogonal detection cone, half-angle of 33° Corresponds to NA(potential) of 0.82
- n_1/n_2 = magnification from object to intermediate image = 1.5 \checkmark



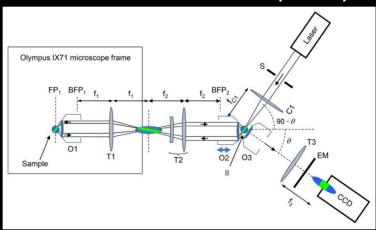


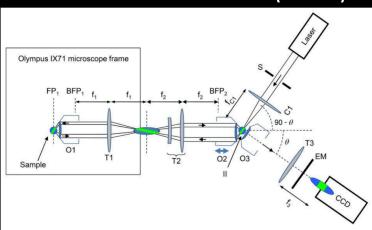


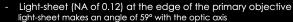

- Light-sheet (NA of 0.0785) at the edge of the primary objective light-sheet makes an angle of 60° with the optic axis
- Orthogonal detection cone, half-angle of 33° Corresponds to NA(potential) of 0.82
- n_1/n_2 = magnification from object to intermediate image = 1.5 \checkmark
- 3rd objective tilted by 30° to capture the oblique emitted photons



- Light-sheet (NA of 0.0785) at the edge of the primary objective light-sheet makes an angle of 60° with the optic axis
- Orthogonal detection cone, half-angle of 33° Corresponds to NA(potential) of 0.82
- n_1/n_2 = magnification from object to intermediate image = 1.5 \checkmark
- 3rd objective tilted by 30° to capture the oblique emitted photons
- Effective NA limited by the 3rd objective

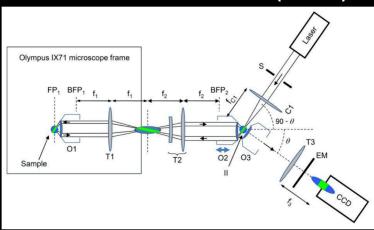


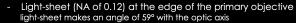

Effective NA 0.45 Collection efficiency of 31%



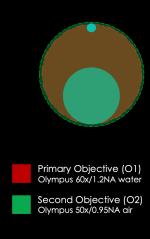
- Light-sheet (NA of 0.12) at the edge of the primary objective light-sheet makes an angle of 59° with the optic axis

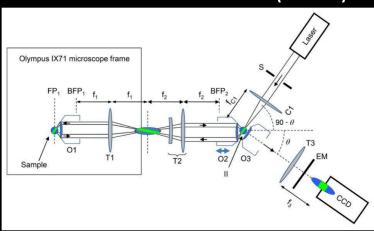
Excitation beam

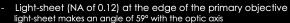


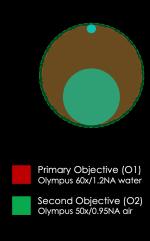


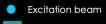
 Orthogonal detection cone, half-angle of 33.4° Corresponds to NApotential of 0.7

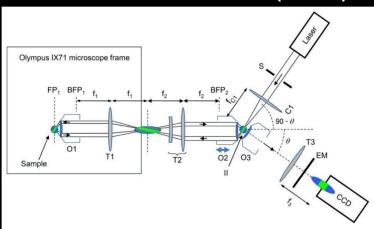




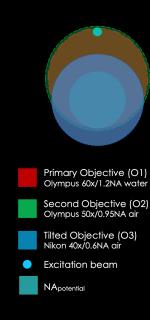


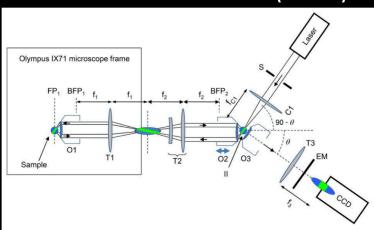

 Orthogonal detection cone, half-angle of 33.4° Corresponds to NApotential of 0.7





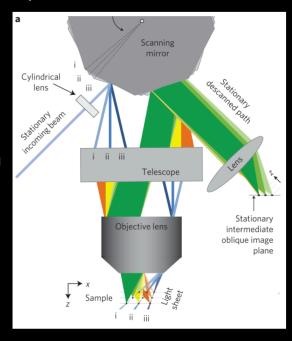
- Orthogonal detection cone, half-angle of 33.4° Corresponds to NApotential of 0.7
- n_1/n_2 = magnification from object to intermediate image = 1.333 \checkmark

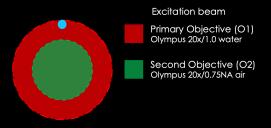




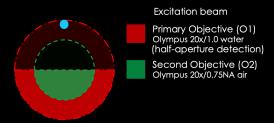


- Light-sheet (NA of 0.12) at the edge of the primary objective light-sheet makes an angle of 59° with the optic axis
- Orthogonal detection cone, half-angle of 33.4° Corresponds to NApotential of 0.7
- n_1/n_2 = magnification from object to intermediate image = 1.333 \checkmark
- 3rd objective tilted by 32° to capture the oblique emitted photons

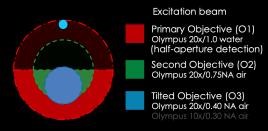

- Light-sheet (NA of 0.12) at the edge of the primary objective light-sheet makes an angle of 59° with the optic axis
- Orthogonal detection cone, half-angle of 33.4° Corresponds to NA_{potential} of 0.7
- n₁/n₂ = magnification from object to intermediate image = 1.333 ✓
- 3rd objective tilted by 32° to capture the oblique emitted photons
- Effective NA not limited by the 3rd objective in this case- captures all of NA_{potential}



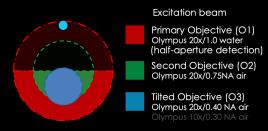
Kumar, S., Wilding, D., Sikkel, M. B., Lyon, A. R., MacLeod, K. T., & Dunsby, C. (2011). High-speed 2D and 3D fluorescence microscopy of cardiac myocytes. Optics Express, 19(15), 13839


SCAPE (2015)

- A single-objective, oblique light-sheet approach
- Light-sheet plane and detected beam cones aren't orthogonal
- Light-sheet angle and position changes as the mirror is scanned:
 i.e., scanner not conjugate to the objective's back focal plane
- Scanning element is a 12-sided polygon mirror; 2 sides are involved
- Excitation sheet and co-aligned detection plane swept with a back and forth motion of the polygon mirror (10-40 Hz)
- No sample or objective lens motion
- The polygon mirror splits the objective's aperture in half i.e., detected NA (max) of 0.5



- Only half-aperture of Obj1 utilized (NA_det = 0.5)
- BFP_Obj2 is 1.333x smaller than BFP_Obj1, yet the two are relayed 1:1. Thus, NA det=0.375
- Obj3 tilted to capture the oblique beams
- All of NA_det should make it through Obj3 since:
 - BFP_Obj3 > Half of BFP_Obj2
 - $f_Obj2 = f_Obj3$

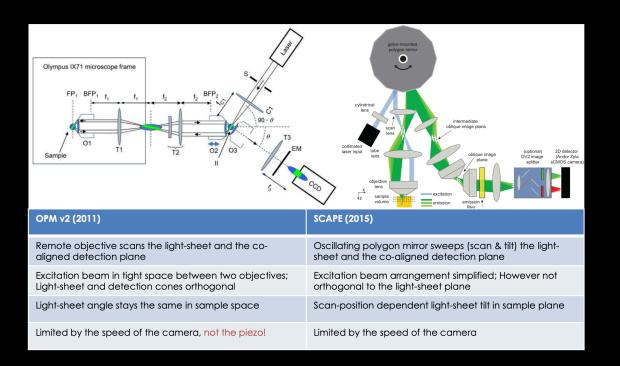


- Only half-aperture of Obj1 utilized (NA_det = 0.5)
- BFP_Obj2 is 1.333x smaller than BFP_Obj1, yet the two are relayed 1:1. Thus, NA det=0.375
- Obj3 tilted to capture the oblique beams
- All of NA_det should make it through Obj3 since:
 - BFP_Obj3 > Half of BFP_Obj2
 - $f_Obj2 = f_Obj3$

Effective NA = 0.375 Collection efficiency = 14%

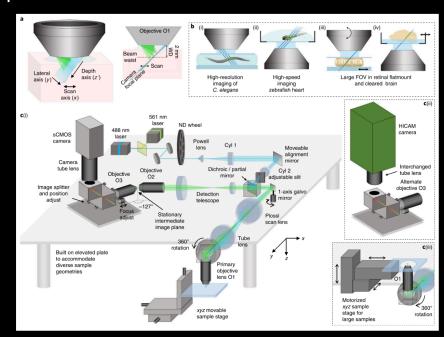
- Only half-aperture of Obj1 utilized (NA_det = 0.5)
- BFP_Obj2 is 1.333x smaller than BFP_Obj1, yet the two are relayed 1:1. Thus, NA det=0.375
- Obj3 tilted to capture the oblique beams
- All of NA_det should make it through Obj3 since:
 - BFP_Obj3 > Half of BFP_Obj2
 - $f_Obj2 = f_Obj3$

Effective NA = 0.375 Collection efficiency = 14%

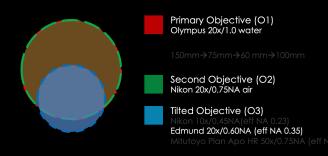

- Only half-aperture of Obj1 utilized (NA_det = 0.5)
- BFP_Obj2 is 1.333x smaller than BFP_Obj1, yet the two are relayed 1:1. Thus, NA det=0.375
- Obj3 tilted to capture the oblique beams
- All of NA_det should make it through Obj3 since:
 - BFP_Obj3 > Half of BFP_Obj2
 - $f_Obj2 = f_Obj3$

Between object space and intermediate image space:

- Ratio of refractive index = 1.333
- Magnification = 1x


Violates the condition necessary to re-image from sample to intermediate image location

OPM v2 (2011) and SCAPE (2015) differences



SCAPE 2.0: Improvements over SCAPE

- Polygon mirror replaced by a 10 mm galvo mirror that is now conjugate to the objective's back focal plane. So, fixed the position-dependent light-sheet tilt in sample space
- Fixed the re-image condition (Magnification = n1/n2)
- 3. Fixed the mismatch between Obj1 and Obj2 back focal plane that can otherwise reduce the effective NA further
- 4. Effective NA of 0.35 (high-res) or 0.23 (low-res)

- Obj1 and Obj2 BFPs match exactly

Between primary and intermediate image location:

- Ratio of refractive indices = 1.333
- Magnification = 1.333x

Satisfies the condition necessary to re-image from sample to intermediate image location

Effective NA of 0.23 Collection efficiency max = $(0.23/1.0)^2 = 5.3\%$

Effective NA of 0.35 Collection efficiency max = $(0.35/1.0)^2$ = 12.25%

Effective NA of 0.48 (max) Collection efficiency max = $(0.48/1.0)^2 = 23\%$

Other OPMs between 2015 and 2019

OSLM, Oblique Scanning Laser Microscopy (2017)

Zhang L, Capilla A, Song W, Mostoslavsky G, Yi J (2017) Oblique scanning laser microscopy for simultaneously volumetric structural and molecular imaging using only one raster scan. Sci Rep 7:8591

SOPi, Scanned Oblique Plane illumination (2018)

Kumar M, Kishore S, Nasenbeny J, McLean DL, Kozorovitskiy Y (2018) Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging. Opt Express 26:13027

e-SPIM, Epi-illumination SPIM (2019)

Yang B, Chen X, Wang Y, Feng S, Pessino V, Stuurman N, Cho NH, Cheng KW, Lord SJ, Xu L, Xie D, Mullins RD, Leonetti MD, Huang B (2019) Epiillumination SPIM for volumetric imaging with high spatial-temporal resolution. Nat Methods 16:501–504

Future directions

AMS-AGY objective aka "Snouty"

https://andrewgyork.github.io/high_na_single_objective_lightsheet/